Parallel & Distributed Computing Question papers

About Parallel & Distributed Computing :

Computers get faster and faster every year. In 1965, Intel co-founder Gordon Moore made a prediction about how much faster computers would get with time. Based on only five data points, he extrapolated that the number of transistors that could inexpensively be fit onto a chip would double every two years. Almost 50 years later, his prediction, now called Moore’s law, remains startlingly accurate.

A distributed system is a network of autonomous computers that communicate with each other in order to achieve a goal. The computers in a distributed system are independent and do not physically share memory or processors. They communicate with each other using messages, pieces of information transferred from one computer to another over a network. Messages can communicate many things: computers can tell other computers to execute a procedures with particular arguments, they can send and receive packets of data, or send signals that tell other computers to behave a certain way.

Here You Will Find All PPDC question papers : 

2018

May June 18     Nov Dec 18

2017

May June 2017     Nov Dec 17

2016

May June 2016    Nov Dec 2016

2015

May June 2015

2014

Nov Dec 2014

More About Parallel & Distributed Computing : 

Distributed Computing : 

A distributed system is a network of autonomous computers that communicate with each other in order to achieve a goal. The computers in a distributed system are independent and do not physically share memory or processors. They communicate with each other using messages, pieces of information transferred from one computer to another over a network. Messages can communicate many things: computers can tell other computers to execute a procedures with particular arguments, they can send and receive packets of data, or send signals that tell other computers to behave a certain way.

Computers in a distributed system can have different roles. A computer’s role depends on the goal of the system and the computer’s own hardware and software properties. There are two predominant ways of organizing computers in a distributed system. The first is the client-server architecture, and the second is the peer-to-peer architecture.

Parallel Computing : 

Computers get faster and faster every year. In 1965, Intel co-founder Gordon Moore made a prediction about how much faster computers would get with time. Based on only five data points, he extrapolated that the number of transistors that could inexpensively be fit onto a chip would double every two years. Almost 50 years later, his prediction, now called Moore’s law, remains startlingly accurate.

Despite this explosion in speed, computers aren’t able to keep up with the scale of data becoming available. By some estimates, advances in gene sequencing technology will make gene-sequence data available more quickly than processors are getting faster. In other words, for genetic data, computers are become less and less able to cope with the scale of processing problems each year, even though the computers themselves are getting faster.

To circumvent physical and mechanical constraints on individual processor speed, manufacturers are turning to another solution: multiple processors. If two, or three, or more processors are available, then many programs can be executed more quickly. While one processor is doing one aspect of some computation, others can work on another. All of them can share the same data, but the work will proceed in parallel.

In order to be able to work together, multiple processors need to be able to share information with each other. This is accomplished using a shared-memory environment. The variables, objects, and data structures in that environment are accessible to all the processes.The role of a processor in computation is to carry out the evaluation and execution rules of a programming language. In a shared memory model, different processes may execute different statements, but any statement can affect the shared environment.