S-25 March, 2013 AC after Circulars from Circular No.153 & onwards

DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY

It is hereby informed to all concerned that, the syllabus prepared by the Boards of Studies, Ad-hoc Board, Committees and recommended by the Faculty of Engineering and Technology, the Hon'ble Vice-Chancellor has accepted the following “Revised Syllabi for all Braches of T.Y. [B.E.]” on behalf of the Academic Council Under Section-14(7) of the Maharashtra Universities Act, 1994 as appended herewith:-

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Revised Syllabi</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Third Year B.E. [CIVIL ENGINEERING]</td>
</tr>
<tr>
<td>[8]</td>
<td>Third Year B.E. [BIOTECHNOLOGY]</td>
</tr>
</tbody>
</table>

This is effective from the Academic Year 2013-2014 and onwards.

All concerned are requested to note the contents of this circular and bring the notice to the students, teachers and staff for their information and necessary action.

University Campus,
Aurangabad-431 004.
REF.No. ACAD/ NP/ T.Y.B.E/
SYLLABI/2013/14140-69

Date:- 15-06-2013.

Director,
Board of College and University Development.
:: 2 ::

Copy forwarded with compliments to :-

1] The Principals, affiliated concerned Colleges, Dr. Babasaheb Ambedkar Marathwada University.

2] The Director, University Network & Information Centre, UNIC, with a request to upload the above all syllabi on University Website [www.bamu.net].

Copy to :-

1] The Controller of Examinations,

2] The Superintendent, [Engineering Unit],

3] The Programmer [Computer Unit-1] Examinations,

4] The Programmer [Computer Unit-2] Examinations,

5] The Superintendent, [Eligibility Unit],

6] The Director, [E-Suvidha Kendra], in-front of Registrar's Quarter, Dr. Babasaheb Ambedkar Marathwada University,

7] The Record Keeper, Dr. Babasaheb Ambedkar Marathwada University.

S*150613/-
Revised Syllabus of

T.E.

EEP/EE/EEE

[Effective from the Academic Year 2013-14 & onwards]
<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>Contact hr/week</th>
<th>Examination scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>EEP/301</td>
<td>Power System Analysis</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>EEP/302</td>
<td>Special Purpose Electrical Machines</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>EEP/303</td>
<td>Electromagnetic Fields</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>EEP/304</td>
<td>Control System Engineering</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>EEP/305</td>
<td>Microprocessor & Interfacing</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>EEP/321</td>
<td>LAB-I Power System Analysis</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EEP/322</td>
<td>LAB-II Special Purpose Electrical Machines</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EEP/323</td>
<td>LAB-III Control System Engineering</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EEP/324</td>
<td>LAB-IV Microprocessor & Interfacing</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BSH331</td>
<td>Communication Skill-II (*)Online Exam</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>CODE</td>
<td>SUBJECT</td>
<td>Contact hr/week</td>
<td>Examination scheme</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>EEP/351</td>
<td>Electrical Machine Design</td>
<td>L 4 T - P 4</td>
<td>Total 20 CT 80 TH - TW - P -</td>
</tr>
<tr>
<td>EEP/352</td>
<td>Energy Conversation & Audit</td>
<td>L 4 T - P 4</td>
<td>Total 20 CT 80 TH - TW - P -</td>
</tr>
<tr>
<td>EEP/353</td>
<td>Power Electronics</td>
<td>L 4 T - P 4</td>
<td>Total 20 CT 80 TH - TW - P -</td>
</tr>
<tr>
<td>EEP/354</td>
<td>Testing & Maintenance of Electrical Equipment</td>
<td>L 4 T - P 4</td>
<td>Total 20 CT 80 TH - TW - P -</td>
</tr>
<tr>
<td>EEP/355</td>
<td>Microcontroller & Applications</td>
<td>L 4 T - P 4</td>
<td>Total 20 CT 80 TH - TW - P -</td>
</tr>
<tr>
<td>EEP/371</td>
<td>LAB-I Electrical Machine Design</td>
<td>- - 2 T 2 P -</td>
<td>Total 25 CT - TH - TW - P -</td>
</tr>
<tr>
<td>EEP/372</td>
<td>LAB-II Energy Conservation & Audit</td>
<td>- - 2 T 2 P -</td>
<td>Total 50 CT - TH - TW - P -</td>
</tr>
<tr>
<td>EEP/373</td>
<td>LAB-III Power Electronics</td>
<td>- - 2 T 2 P -</td>
<td>Total 50 CT - TH - TW - P -</td>
</tr>
<tr>
<td>EEP/374</td>
<td>LAB-IV Testing & Maintenance of Electrical Equipment</td>
<td>- T 2 P 2</td>
<td>Total 50 CT - TH - TW - P -</td>
</tr>
<tr>
<td>EEP/375</td>
<td>LAB-V Microcontroller & Applications</td>
<td>- - 2 T 2 P -</td>
<td>Total 50 CT - TH - TW - P -</td>
</tr>
<tr>
<td>EEP/376</td>
<td>Seminar</td>
<td>- - - - -</td>
<td>Total 25 CT - TH - TW - P -</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>L 20 T - P 10</td>
<td>Total 100 CT 30 TH 400 TW 100 P 150 Total 750</td>
</tr>
</tbody>
</table>
EEP/301- POWER SYSTEM ANALYSIS

Teaching scheme
Theory: 4 Hrs/Week
Practical: 2 Hrs/Week

Examination scheme
Theory Paper : 80 Marks
Internal assessments 20 marks
Practical: 50 Marks

Unit-I: Modeling of Power System: [8 hrs]
complex power flow, balanced and reactance diagrams of a power system, per unit system per unit representation of transformers, synchronous machines, representation of loads. Graph theory and its applications for formation of primitive network and Z and Y matrices, incidence matrices, Y-bus and Z-bus matrices.

Unit-II: Load Flow Studies: [10 hrs]
Introduction, network model formulation, formation of Y-bus by singular transformation, load flow problem, iterative methods of load flow such as Gauss-Seidel, Newton-Raphson method, decoupled load flow and fast decoupled load flow

Unit-III: Symmetrical Fault Analysis: [6 hrs]
Transients on a transmission line, short circuit of a synchronous machine on no load and on load. Short circuit current computation on no load and on load, selection of circuit breakers, Z-bus formulation, algorithm of short circuit studies.

Unit IV: Symmetrical Components: [6 hrs]
Fundamentals of symmetrical components, sequence impedance and sequence network of star connected loads, transmission lines, synchronous machines, and transformer, sequence network of a loaded generator.

Unit V: Unsymmetrical Fault Analysis: [6 hrs]
signal line to ground (L-g), Line to line (L-L), double line to ground (L-L-G) faults analysis of above faults using bus impedance matrix, bus voltage and line current during faults. open conductor faults

Unit VI: Security Analysis: [4 hrs]
Basic Concepts, Static Security Analysis at Control Centers, Contingency Analysis, Contingency Selection.
Term Work:

The term work shall consist of either writing computer programs or solving following power system problems using MATLAB or other software and a mini project related to the subject.

1. Solution of Building the bus admittance matrix for given power system network.
4. Solution of power flow for given power system network using Fast-decoupled method
5. Solution of Formation of bus impedance matrix by building algorithm method.
6. Solution of computing the fault current, bus voltage, and line currents.

Text books:

3. Wadhawa C.L "Elements Power System", John Wiley & sons,

Reference Books:

EEP/302 - SPECIAL PURPOSE ELECTRICAL MACHINES

Teaching Scheme
Theory: 4 Hrs/Week
Particles: 2 Hrs/Week

Examination Scheme
Paper: 80 Marks
Class Test: 20 Marks
P/O: 50 Marks

Special electrical machines as an extension to the study of basic electrical machines:

OBJECTIVES
To impart knowledge on Construction, principle of operation and application of synchronous reluctance motors. Stepping motors, permanent magnet brushless D.C. motors, permanent magnet synchronous motors, Isolation Transformer, Earthing Transformer, Pulse Transformer, Furnace Transformer, Rectifier smelter Transformer. Construction, principle of operation and application of Welding Transformers like ARC welding X-er, MIG welding X-er, Spot Welding X-er; Construction, principle of operation and application of High frequency Transformer. Connect conventional single-phase transformer as buck or boost autotransformer and measure currents and voltages specific use and application.

ROTATING MACHINES

UNIT-I
Induction generators: self excitation requirements, voltage regulation, different methods of voltage control, application to mini and micro hydel systems. Doubly fed induction machines: operation in generation mode, application to grid connected wind and mini/micro hydel systems. Switched Reluctance Motor: Construction, operation and applications. Brushless DC Machines: construction operation and applications. Linear Machines: Linear Induction Machines and Linear

UNIT-II

STATIC MACHINES

UNIT-III
Transformer for special purposes - pulse, high frequency, rectifier, welding, isolation. Connect conventional single-phase transformer as buck or boost autotransformer to and measure currents and voltages. Specific uses and applications.

UNIT-IV
Electric Heating and Welding:

UNIT-V
Term work:
The term work shall consist of minimum eight Experiments.

1. Load Characteristics of Variable Reluctance Motor.
2. Load Characteristics of Stepper Motor.
3. Load Characteristics of Brush less DC Motor.
5. Load Characteristics of PMDC Motor.
7. Study of Construction & Operation of MIG welding Transformer.
10. Study of Construction & Operation of Induction Furnace.

TEXT BOOKS

REFERENCE BOOKS

EEP/303- ELECTROMAGNETIC FIELDS

Unit: 1 Vector analysis: [7 hours]
Scalars and vectors, Vector algebra, Vector components and unit vectors, Vector field, The Cartesian Coordinate System, Dot, cross products, circular, cylindrical and spherical coordinate systems. Coulomb's Law and electric field intensity, Electric field due to a continuous Volume Charge Distribution, field of a line charge, field of a Sheet of a charge, streamlines and sketches of fields.

Unit: 2 Electric Flux Density Gauss Law and divergence: [7 hours]
Gauss's Law and its Applications: to some symmetrical charge distribution and differential volume element, divergence, Maxwell's first equation (electrostatics), the vector operator and the Divergence theorem, Energy and Potential Energy expended in moving a point charge in an electric field, line integral, potential difference and potential, potential gradient, potential field of a point charge and system of charges, dipole, energy density in electrostatic field.

Unit: 3 Conductors, dielectric and capacitance: [7 hours]
Current and current density, continuity of current, metallic conductors, conductor properties and boundary conditions and method of images, semiconductors, nature of dielectric, boundary conditions for perfect dielectric, capacitance, and capacitance of two-wire line. Poisson's and Laplace Equations: Uniqueness theorem, examples in rectangular, spherical and cylindrical coordinates, product solutions of Laplace equations, and solutions of Poisson's equations.

Unit: 4 Steady Magnetic Field [7 hours]
Biot-Savart’s law, Amperes circuit law, curls, stokes theorem, magnetic flux and magnetic flux density, scalar and vector magnetic potentials.

Unit: 5 Magnetic forces and inductance: [7 hours]
Force on moving charge, differential current element, force between differential current element and torque on a closed circuit, nature of magnetic materials, magnetization permeability, magnetic boundary conditions, magnetic circuit, potential energy and forces on magnetic materials, self and mutual inductance.

Unit: 6 Time varying fields and Maxwell’s equations: [5 hours]
Faraday's law, Maxwell’s equations in point form, Maxwell’s equations in integral form, retarded potentials.
TEXT BOOKS:

REFERENCE BOOKS:
- "Elements of electromagnetics" Matthew n. o.Sadiku.
- "Introduction to Electromagnetic Field" By Paul
- "Principles of Electromagnetics" By Mahaptra
- "Electromagnetic Waves" by Shegaonkar
EEP/304- CONTROL SYSTEMS ENGINEERING

Teaching Scheme:
Theory: 4hrs /Week
Practical: 2Hrs /Week

Examination Scheme:
Theory Paper: 80marks,
Internal Assessment Marks: 20Marks
Practical & Oral: 50 Marks

Unit 1: Basic concept, Modeling and representation of control system and Components
[8 hours]
Basic concept of control system, notion of feedback, Open and closed-loop systems, Transfer function modeling and representation of Control system., Linear Mathematical physical systems "Mechanical System"(Translational and Rotational), Electrical analogy, Block reduction technique, Signal flow graph, Mason’s Gain formula,Servo components: Error detectors, Potentiometer, synchros and gyros, optical rotary encoders, DC and AC Servomotors, stepper motor, gear trains, Transfer function and applications of these in control systems.

Unit 2: Time Domain Analysis
[6 hours]
Type and order of Control System, Typical test signal "Step, Ramp, Parabolic and Impulse signals. Time response of First and second order systems to unit step input, Time domain specifications of second order systems, Steady state errors and definitions of error constants K_p,K_v and K_y Concept of system sensitivity to disturbance signals.

Unit3: Stability
[6 hours]

Unit4: Root Locus
[6 hours]

Unit5: Frequency Domain Analysis
[8 hours]
Introduction, Frequency domain specification, Correlation between time and Frequency domain responses, Bode plot, Determination of gain and phase margin from Bode plot, Effect of gain variation and addition poles and zeros on Bode plot, Determination of transfer function from Bode plot, Compensator design using Bode plot, Lead, Lag, Lag-Lead compensator.

Unit6: State Space Concept
[6 hours]
Concept of state and state variable, state equation of linear time-invariant and continuous data system. Matrix representation of state equation, Conversion of state variable model to transfer function, Canonical form, Jordan Canonical form, Solution of state equations, Concept of controllability and observability.
Text Books:

• 'Modern Control Engineering' by Katsuhiko Ogata, Prentice Hall of India Pvt Ltd.
• 'Control systems-Principles and design' by M. Gopal 2nd Edition 2002.

Reference Books:

• "Control System Engineering System" By Dr. Rajeev Gupta
• "Control Engineering" By K. P. Ramachandran.
• " Control System" By Varmah
• "Control System Engineering" By Palani

Term Work

The term work shall consist of a record of minimum EIGHT experiments from the following list and
A Mini project related to subject.
1) Study of potentiometers: Modelling, transfer function and Characteristics.
2) Study of synchros: Modeling, transfer function and Characteristics.
3) Study and plotting of characteristics of rotary optical encoder.
4) Determination of transfer function of:
 i) Armature-controller D.C. servo motor.
 ii) A.C. servo motor.
5) Time domain analysis of a second order system.
7) Computer aided plotting of Nyquist and Bode-plots.
8) Study of Regulator system.
9) Study of a process control system and use of a PID controller.
10) Computer aided design of a liner control system.
EEP/305 - MICROPROCESSOR & INTERFACING

Teaching scheme:
Theory: 4 Hrs/week
Practical: 2 Hrs/week

Examination scheme:
Theory paper: 80 marks
Practical & oral: 50 marks

UNIT I: Introduction to Microprocessor [4 hours]
Introduction to Microprocessor, Microprocessor System with bus organization, Microprocessor Architecture and operation, Memory and Input/Output devices, Memory and Input/Output operation.

UNIT II: 8085 Microprocessor Architecture [8 hours]
8085 Microprocessor Architecture, Address, Data and Control Buses, Pin Functions, Demultiplexing of buses, Generation of Control Signals, Instruction cycle, Machine Cycle, T-State, Memory Interfacing.

UNIT III: Assembly Language Programming Basics [12 hours]
Assembly Language Programming Basics, Classification of instructions, Addressing modes, 8085 instruction set, Instruction and data formats, Writing, Assembling and Executing a program, Debugging the program, decision making, looping, stack & subroutines, developing counters & time delay routines, Code converters, BCD Arithmetic, 16 bit data operations.

UNIT IV: Interfacing Concepts [12 hours]
Interfacing Concepts, ports, Interfacing of I/O devices such as LED, LCD Seven Segment LED, Keyboards, stepper motor, relay, Interrupts in 8085, Interfacing of Converters (A to D and D to A), Programmable interfacing devices like 8279 keyboard/Display Controller, 8255 PPI, 8253/8254 Timer, 8259 PIT, 8257 DMA Controller, Serial I/O Concept, SID and SOD, 8251 USART, Interfacing of these chips with 8085 and its programming in different modes.

UNIT V: Microprocessor Applications [4 hours]
Power systems: Measurements of Voltage, frequency, power factor, MP based protective relays, Electrical drives: Stepper motor control, DC motor speed control.
Books:
1. Microprocessor Architecture, Programming and Applications with 8085- Ramesh Gaonkar, Penram International
3. Microprocessor and Microcontroller Fundamentals- The 8085 and 8051 Hardware and software- William Kleitz
5. Fundamentals of Microprocessor and Microcomputers- B.Ram. TMH
6. Microprocessors and Peripherals B.Venkatramani,TMH

Practical Exam:
The practical exam will be of three hours duration. It will consist of one experiment conducted during the course and oral exam based on the syllabus.

List of Practicals
1. 6/8 Assembly Language Programs which should include 8 bit and 16 bit operations, BCD operation and Block data transfer technique
2. Interfacing of I/O Devices : LED, Keyboard, LCD, Sevensegment LED (at least two)
3. Interfacing of stepper Motor
4. Interfacing of Converters ADC 0808/0809 and DAC 0808
5. Interfacing using 8279,8259,8253,8257(at least two)
Dr. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD
FACULTY OF ENGINEERING AND TECHNOLOGY
Third Year Engineering (All Branches)
Semester – I
Course code : BSH331
Title :- Communication skills-II

Teaching Scheme
Practical:- 2 Hours/Week

Examination Scheme
Online Exam :- 50 Marks
Duration of Paper :01 Hours

CONTENTS

UNIT-1

- Fast calculation techniques, Number system,ratio ,proportion, variations averages,
- Simple interest ,compound interest,profit,loss
- Work and time speed and distance
- Set theory and vann diagram,permutation and combination
- Probability, alphanumerics, logical deduction, reasoning, coding and decoding and blood relation
- Data interpretation

UNIT-2

- The key components of non verbal communication i.e.eye contacts, body language, vocal tone and volume.
- Team work and team building, The basics of team intelligence, Divesity awareness, Gender issues
- Group discussion, unstructured group discussions and actual group discussions
- Presentation skills ,self confidence and decision making

UNIT-3

- Adapting to corporate life
- Phone etiquettes, Email etiquettes, clothing etiquettes, Dining table etiquettes
- Getting ready for an interviews, corporate dressing, writing reports and proposals, minutes writing,

Reference Books:
1. Gopal Swamy Ramesh,Mahadevan Ramesh ,"The Ace of soft skills"Pearson publication
2. Bansal Harison,"Spoken English"
3. Orientblackswan, “English for Engineers and Technologist“
4. Jerry Wiessman , “Presenting to Win” Prentice Hall publications
EEP/351- ELECTRICAL MACHINES DESIGN

Teaching Scheme
Theory: 4 Hrs/Week
Particles: 2 Hrs/Week
P/Or: 50 Marks

Examination Scheme
Paper: 80 Marks
Class Test: 20 Marks

OBJECTIVES
To impart knowledge on Design of Basic Electric machines, and devices. Design Principles according to operation and application of Electrical Machines. Thermal & Magnetic considerations, in Designs of Motors and Transformer according to Construction, principle of operation and application.

UNIT-I
Design Base: Principles of design, design factors, Specifications, Standardization, Rating, Performance requirements, Design limitations, Reference Standards, Different approaches.

UNIT-II

UNIT-III
Transformer Design (Part-I):-
Modes of heat generation, various methods of cooling, temperature-rise, heating / coolingcycles, heating time constant, cooling time constant, maximum temperature rise and their estimation. Types, constructional features, Specifications as per IS 2026, Output equation, design of main dimensions, core, yoke, windings (including selection).

UNIT-IV.
Transformer Design (Part-II) :-
Evaluation of resistance, leakage reactance of windings, no-load current, estimation of losses, design of tanks, calculation of mechanical forces developed under short circuit conditions, measures to overcome this effect

UNIT-V.
Design of 3-phase Induction Motor (Part-I):-
Constructional features, types of ac windings, output equation, specific electrical and magnetic loadings, ranges of specific loadings, turns per phase, number of stator slots, calculations for main dimensions and stator design parameters.

UNIT-VI
Design of 3-phase Induction Motor (Part-II):-
Selection of length of air gap, factors affecting length of air gap, design of rotor, Unbalanced magnetic pull and its estimation, harmonic field effect on the performance of 3-phase induction motor, suitable combinations of stator & rotor slots, design of squirrel cage and wound rotor.

UNIT-VII
Design of Electrical devices:
Design of heating coil, Choke coil, Electromagnets.
Term work:
The term work shall consist of three drawing sheets (Minimum one sheet to drawn in AutoCAD.)
1. Details and assembly of 3-phase transformer with design report.
2. Details and layout of AC winding with design report.
3. Assembly of 3-phase induction motor (only sheet)
4. Report based on Industrial visit to a manufacturing unit (Transformer or Induction motor)

Text Books:

Reference Books
3. Vishnu Murt
EEP/352- ENERGY CONSERVATION & AUDIT

Teaching Scheme:
Theory: 4Hrs/week
Practical: 2Hrs/week

Exam Scheme:
Theory Paper: 80 Marks
Class Test: 20 Marks
Term Work: 50 Marks

Unit 1:- Global Environmental concerns & Issues (5 Hours)
Ozone layer depletion & its effects; climate change problems & response; Global warming, sources of GHG's; Global warming potentials; climate change implications; Kyoto protocol; UNFCCC (United Nations Framework Convention on Climate Change); CDM; Carbon markets; Emissions-Trading, ISO 50001; Role of Renewable & non-conventional energy sources.

Unit 2:- Energy Audit (5 Hours)

Unit 3:- Energy Efficiency & Optimization- Thermal- Mechanical Systems (10 Hours)
Laws of Thermodynamics; Steam boilers- types; fuel atomization; Boiler efficiency by Direct & Indirect methods; Energy efficiency opportunities in boilers, HVAC & refrigeration system, compressed air system, pumps, pumping systems, Affinity Laws, cooling towers, fans & blowers; Co- Generation- need, principal of cogeneration, technical options & primes movers for cogeneration; Waste Heat Recovery System- devices- Recuperators, heat wheels, heat pipe, economizer, waste heat recovery boiler.

Unit 4 :- Energy Efficiency & Optimization in Electrical Systems (10 Hours)
Energy efficient technologies in electrical systems; Electricity billing; load management; maximum demand control; PF improvement & its benefits; APFC; energy efficient transformers; T & D losses; Harmonics; Energy efficient Motors; soft starters; lighting system; electronic ballasts; Energy Sector Reforms; Electricity Act 2003.

Unit 5:- Economic Analysis & Financial Evaluation (5 Hours)
Economic Analysis & Financial Evaluation of Energy Conservation Proposals; Cash Flow Model; Time Value of Money; Financial Analysis- Simple payback; Return on Investment (ROI); Net-Present Value; Internal Rate of Return (IRR); Profitability Index, Uncertainty & sensitivity analysis.

Unit 6:- Case Studies (5 hours)
Text Books:-

1. "Industrial Energy Conservation"
 - Charles M Gottschalk, John Wiley & Sons, 1996
2. "Energy Management Principals"
 - Craig B Smith, Pergamon Press
3. "4- Books for National Certification Examination for Energy Managers & Energy Auditors- Published By BEE"

References:-

1. "Optimizing Energy Efficiencies in Industry"
 - G Rajan Tata McGraw Hill, 2001
2. "Energy Management"
 - Paul O'Callaghan, Tata McGraw Hill Co.
4. "Energy Technology"
 - S Rao & B BParulekar, Khanna Publishers, 1999

Term Work:-

Term work shall consist of

A. Study Experiment on any five
 1. To study the performance assessment of HVAC & Refrigeration system.
 2. To study the performance assessment of Co-generation system.
 3. To study the energy performance assessment of boilers. Indirect method of efficiency of boilers.
 5. Power Factor improvement & benefits.
 7. Energy performance assessment of Lighting system

B. Student should prepare & submit a detailed energy audit report of any one of Industrial organization mention in unit 6. Local industrial visit should be arranged to study energy conservation & optimization methods.
EEP/353- POWER ELECTRONICS

Unit: 1 Power Devices [8 hours]
Structure, Characteristics, Switching actions, Trigger requirements, Ratings, Protections and Areas of application of SCR, TRIAC, GTOs, IGBT, Power MOSFET and MCTs.

Unit: 2 AC-DC Converters [8 hours]
Single phase and three phase half (semi) and full converters: Quadrants of operation, circuit configurations, working, performance parameters and input-output waveforms for R, R-L and RLE loads. Dual converter in circulating and non-circulating current modes.

Unit: 3 DC-DC Converters [6 hours]
Step-up and step-down configurations, CLC and TRC techniques, PWM and FM techniques. Practical transistorized chopper circuits: working, control, output waveforms, continuous and discontinuous current conduction.

Unit: 4 DC-AC Converters [8 hours]
Single phase and three-phase thyristorised bridge circuits, output waveforms for R and R-L loads. PWM techniques-Single, Multiple and Sinusoidal PWM.

PWM Inverters: Principle of operation, Performance parameters, Working of single phase and three phase circuits, Current Source Inverter, ASCCSI.

Unit: 5 PWM Converters [6 hours]
Principle of operation, circuit configurations, performance waveforms and applications of Switched Mode Converters (buck, boost and buck-boost) Switched Mode Rectifiers, Power conditioners and UPS.

Unit: 6 AC-AC Converters [6 hours]
AC controllers; single phase & three phase, Cycloconverters; single phase to single phase, three phase to three phase, three phase to single phase, half-wave bridge configuration, four quadrant operation.
Text Books

4. "Power Electronics" By PC Sen
5. "Power Electronics" By Khanchandani/Singh

Reference Books:

- "Elements of power electronics" By Phillip T. Krein.
- "Power Electronics" by V. R. MOORTHI.
- Power Semiconductor Circuits by S.B. Dewan and Straughan, John Willey.
- Power Electronics and AC Drives' by B.K. Bose, Pearson.
- SPICE for Power Electronics by M.H. Rashid, McGraw Hill International.

The laboratory consists of minimum EIGHT experiments from following list.

anyTHREE from 1 to 4 THREE from 5 to 8 and TWO from 9 to 11.

1. SCR Turn-on methods.
2. SCR Commutation methods.
3. IGBT / MOSFET Drivers.
4. TRIAC - Phase control.
5. Single phase / three phase Converter
6. D.C. Chopper
7. Single phase / three phase Thyristorised Inverter
8. PWM Inverter
9. Simulation of Converter / Chopper
10. Simulation of PWM Inverter
11. Switched mode Converter / Rectifier
EPP/354- TESTING AND MAINTENANCE OF ELECTRICAL EQUIPMENTS

Teaching Scheme
Lecture: 4 Hrs/week
Practical: 2 Hrs/week
Term work 50 Marks

Exam Scheme
Paper: 80 Marks
Test: 20 Marks

OBJECTIVES
To impart knowledge on Testing of Electrical Equipments used in power systems. Fault finding techniques for Basic Electric machines, like Transformers and Induction motors. Remedies on faults. Principles of testing methods, their way of operation and application, for different Electrical Machines. Thermal & Magnetic considerations, in Testing of Motors and Transformer according to Construction, operation and application.

Unit I. General Introduction (4 Hrs)

a) Objectives of particular testing, Significance of ISS, concept of tolerance, routine test, type test, special tests
b) Method of testings, direct, indirect, destructive and non-destructive testing methods.
C) Concept of routine, preventive and breakdown maintenance, advantages of preventive

Maintenance, Introduction to Total procedure maintenance [TPM].

UNIT-II
Types of faults / errors mainly in Power Transformers and rectification of faults.

(10 Hrs.)

a) Faults During manufacturing: Description and causes of ‘Reasons’ behind development of faults. Like [Turn to turn short/open ckt., coil to coil short / open ckt. Winding to winding short circuit, winding to body short /over leakage current, Magnetic imbalance, wrong placement of coils in winding, Oil properties of filled oil faults due to loose /wrong/in-sufficient stacking of core, transformer has excessive vibrations, failure of winding (Turn to turn or layer to layer insulation) paper insulations]. Effect of each reason on transformer, testing method as per ISS, and equipment used to identify each reason.

b) Faults During operation: Description and causes of ‘Reasons’ behind development of faults. like 1. Transformer gets over heated, 2. Not supplying power with full load capacity. (We should not consider dead short circuit during operation because it need not be tested); 3. Radiator choking. Breather silica jell bad condition, leakages from tank joints, Loose connections at terminals. Conservator top-up need, contamination of transformer oil properties, transformer de-hydration need etc. Effect of each reason on transformer, testing method as per ISS, and equipment used to identify each reason.
UNIT-III

Types of faults / errors mainly in Induction motors and rectification of faults.

[10Hrs]

a) Faults During manufacturing: Description and causes of 'Reasons' behind development of faults. Like [Turn to turn short/open ckt, coil to coil short / open ckt. Winding to winding short circuit, winding to body short /over leakage current, Magnetic imbalance, wrong placement of coils in winding, faults due to loose /wrong/in-sufficient stacking of core, rotor dynamic unbalancing, rotor is not aligned, failure of winding (Turn to turn or layer to layer insulation) paper insulations, blow holes in casting of motor body, cracks in welded motor body etc.]. Effect of each reason on motor, testing method as per ISS, and equipment used to identify each reason.

b) Faults During operation: Description and causes of 'Reasons' behind development of faults. like
1. Motor gets over heated, 2. Not supplying power with full load capacity. (We should not consider dead short circuit during operation because it need not be tested.); 3. Rotor had bend, rotor conductor broken / ooze out, Bearings in jammed/warned out condition, magnetic flux leakages from stator core / body joints, Loose connections at terminals. Use of wrong duty cycle or mounting type motor. Motor has excessive vibrations. Effect of each reason on motor, testing method as per ISS, and equipment used to identify each reason.

UNIT-IV

Introduction and preliminary functions of following equipments for testing: and fault finding by using these equipments:

1. Industrial sono-graphy (Ultra sonic testing): - for detection of internal cracks / blow holes / voids in Solid metallic /insulating materials.
3. Impregnation plants for polymer insulating materials.

UNIT-V

Testing Methods: Conceptual understanding to detect the fault by test results of:-

1. Megger Testing [How, When & Why?].
2. Resistance Testing [How, When & Why?]
3. Turns Ratio Testing [How, When & Why?]
4. Sonography [How, When & Why?]
5. Radiography [How, When & Why?]
6. Acidity in Xer- oil. [How, When & Why?]
7. Heat Run testing [How, When & Why?]
8. DGA- Dissolved Gases Analysis. [How, When & Why?]
9. HV withstand test [How, When & Why?]
Text/Reference Books

1. B. L Theriau "Electrical Technology Vol- II" S.Chand & Co, New Delhi
2. B.V.S.Rao "Operations and Maintenance of Electrical Machine" Vol-I & II Media Promoters & Publisher Ltd Mumbai
4. 'Testing of Induction motors' by S. Swaminathan, Tirupati Publications Bangalore.
7. S.L.Uppal "Electrical Power", Khanna publication New Delhi
8. M.G.Say,"The performance and design of alternating current machine", CBS publishers & distributors
9. Relevant I.S. Codes.

Term Work: [Minimum '8'- Expts. From the list below.]

1. Testing and fault finding of 1-ph electrical motor, and study of its Re-winding process in details till its operation after re-winding.
3. Testing and fault finding of submersible multistage electrical motor, and study of its Re-winding process in details till its operation after re-winding.
4. Testing & measurement of Earth resistance for your Lab./Building.
5. Testing and maintenance of 3-phase induction motor starter.
6. Testing and maintenance of control panel.
9. Study of cable jointing.
11. Study of Earth mat for 33kV substation.
12. Visit to TESTING department of Electrical utility.
13. Visit to TESTING department of Transformer Industry.
EEP/355- MICROCONTROLLER & APPLICATIONS

Teaching scheme: Examination scheme:
Theory : 4Hrs/week Theory paper : 80 marks
Practical : 2 Hrs/week Practical & oral: 50 marks

1. Advanced processor (08 Hours)
 Introduction to 16 bit Intel 8086 Microprocessor, Architecture, Addressing Modes, Memory organization, Instruction set and assembly language program.

2. Architecture Of 8051: (08 Hours)
 Comparison of Microprocessor and Microcontroller - Block diagram of Microcontroller, Functions of each block, Pin details of 8051, ALU, ROM, RAM, Memory Organization of 8051, Special function registers – Program Counter, PSW register, Stack, I/O Ports, Timer, Interrupt, Serial Port, Oscillator and Clock. Overview of 8051 family.

3. Instruction Set And Programming Of 8051: (06 Hours)
 Instruction set of 8051, Classification of 8051 Instructions - Data transfer instructions, Arithmetic Instructions, Logical instructions, Branching instructions, Bit Manipulation Instructions. Assembly Language Programming.

4. Programming of On-Chip Peripherals: (06 Hours)
 I/O Bit addresses for I/O and RAM – I/O programming – I/O bit manipulation programming. Timer Programming 8051 Timers – Timer 0 and Timer 1 registers – Different modes of Timer – Mode 0 Programming – Mode 1 Programming – Mode 2 Programming – Mode 3 Programming – Counter programming – Different modes of Counter – Mode 0 Programming – Mode 1 Programming – Mode 2 Programming – Mode 3 Programming (simple programs)

5. Serial Communication & Interrupt: (06 Hours)

6. Interfacing Techniques: (06 Hours)
 Interfacing external memory to 8051, 8051 interfacing with the 8255, Programming of Relays, Sensor interfacing, ADC interfacing, DAC interfacing - Keyboard interfacing, Seven segment LED Display Interfacing, Stepper Motor interfacing, DC motor interfacing using PWM.
Books:
1. Badri Ram “Advance Microprocessor and Interfacing Techniques” TMH
2. Barry B Brey The intel Microprocessor 8086 to Pentium architecture programming and interfacing.

Practical Exam:
The practical exam will be of three hours duration. It will consist of one experiment conducted during the course and oral exam based on the syllabus.

List of Practicals
1. Assembly Language Programs (at least 6/8)
2. Interfacing of Discrete LEDs: Blinking LEDs, Running Lights, Binary counter
3. Displaying numbers on Seven segment LEDs
4. Use of Timer to generate a delay.
5. Generating square wave on port pins.
6. Display message on LCD screen.
7. Programs Based on interrupts
8. Interfacing of stepper Motor
9. Interfacing of Converters ADC 0808/0809 and DAC 0808